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Fig. 1. Our method based on deformation gradient control can produce animations of topologically changing materials. The MPM body starts out in its initial
shape (left), then begins to deform its topology (middle left), changing topology and ejecting mass (middle right), until finally reaching the target shape (right).
The colors red, green, and blue represent areas of high, medium, and low mass. The blob decided that ejecting its own mass was the fastest way it could
decrease its loss function.

ABSTRACT
We present a method of topologically morphing physical objects into user-
defined shapes. We take advantage of the material point method’s (MPM)
ability to implicitly handle topological change. In addition, we define two
different loss functions which can measure the "distance" between MPM
bodies. We show that minimizing one of these loss functions by controlling
deformation gradients can lead to interesting and novel animations. Beyond
just target shapes, we show that there are many other parameters users can
control to tune the animation to their liking.
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1 INTRODUCTION
Adding physics to your animations is really hard without the help
of a physical simulator. However, even with a physical simulator, a
new problem arises, which is controlling the physical simulation
in a desired way. Our goal is to take advantage of the new and hot
material point method and emerging field of differentiable physical
simulators to add new control methods to physics-based animation.
Our focus is on controlling 2D material point method simulations
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in an artistic way, though many of the principals can be applied to
3D simulations.

2 RELATED WORK

2.1 Material Point Method
2.1.1 MPM formulations. Thematerial pointmethod (MPM) emerged
as a particle-in-cell method for solid mechanics [Sulsky et al. 1995].
MPM was first introduced to computer graphics when it was used
to simulate snow for Disney’s Frozen [Stomakhin et al. 2013]. Jiang
et al. [Jiang et al. 2016] provided the first educational resource on
MPM for computer graphics. Hu et al. [Hu et al. 2018a] reformulated
MPM using a moving-least squares approach.

2.1.2 MPM topology. The main advantage of using a particle-in-
cell method such as MPM is its implicit handling of topological
change, as opposed to mesh based methods such as Finite Element
Method (FEM) where remeshing and mesh distortion can become a
significant computational problem. Wang et al. [Wang et al. 2019]
explored methods for explicitly handling and tracking topological
change in MPM. Continuum damage and fracture mechanics have
also been applied to MPM [Wolper et al. 2019], producing impressive
fracture simulations. In this work, we have decided to stick to using
MPM’s implicit topological handling due to ease of implementation.

2.2 Animation-Control
2.2.1 External Force Control. McNamara et al [McNamara et al.
2004] use a combination of Gaussian wind forces to control the
animation of fluids and gases. They also introduce the idea of using
mass sources the control of level-set fluids. Gentle external forces
have also been used for real-time interactive control of deformable
objects [Barbič and Popović 2008].

2.2.2 Internal Force Control. The principal of control for elasti-
cally deformable characters by only creating internal energy was
introduced by Coros et al. [Coros et al. 2012]. When control forces
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are generated only from an internal elastic potential, momentum
is automatically conserved. This avoids problems of external con-
trol methods, where motion can seem non-physical and unrealistic.
However, their formulation faces the limits of a finite element mesh
such as strict topology. Hu et al. used actuator stresses to control
soft robotics simulated in MPM [Hu et al. 2018b], but these examples
did not include any topology change.

3 MPM AS A COMPUTATION GRAPH

3.1 MPM Algorithm
We use MLS-MPM since it is faster, easier to implement, and easier
to take gradients from than traditional MPM. We refer to Hu et al.
[Hu et al. 2018a] for an in depth introduction to MLS-MPM. We will
also follow MPM in graphics notation, that is using subscripts i, j,k
when referring to grid nodes and subscripts p,q, r when referring
to particles.

3.2 Gradient computation
We can view one timestep of MPM as a computation graph, where
the nodes are both the material points and the grid nodes. The
connections between material points and grid nodes are made if
they are within range via the shape functions used in the MPM
simulation. We can view this computation graph as one layer of a
network of layers, each layer corresponding to a timestep. Thus,
by using the chain rule, the gradient of one variable can be taken
with respect to any backward dependent variable. We refer to the
appendix of Hu et al. [Hu et al. 2018b] which provides many of the
gradients we need.

3.3 Gradient Descent
Now that we have a method for computing accurate gradients, we
can perform any gradient-based optimization method. We write in
pseudocode how to perform gradient descent on MPM to optimize
a given loss function with respect to some control parameters in
Algorithm 1. Note that we can save computation time by controlling
parameters on a reduced number of control timesteps. We define
a "temporal iteration" as one pass of gradient descent on all the
control timesteps.

Algorithm 1:MPM Spacetime Control
Given MPM point cloud, simulation parameters, and n =
number of timesteps;
Set up spacetime computation graph;
for i = 0; i < total temporal iterations; i++ do

for each control timestep do
Run Forward Simulation;
Compute Loss;
Compute Gradients w.r.t. control parameters of
current timestep;
Perform Gradient Descent;

end
end

Fig. 2. A solid MPM circle in its initial rest state (left), and its final rest state
(right) after setting the deformation gradients to

( 0.8 0
0.2 0.8

)
.

4 DEFORMATION GRADIENT CONTROL

4.1 Deformation gradients: MPM vs FEM
Deformation gradients are computed from tetrahedral rest-states in
FEM [Sifakis and Barbic 2012]. MPM, on the other hand, numerically
integrates deformation gradients using Equation 1:

Fn+1p =

(
I + ∆t

∑
i
vn+1i ∇ωn

ip

)⊺
Fnp (1)

This method of calculating deformation gradients has its disad-
vantages, such as introducing numerical plasticity. On the other
hand, MPM bodies can be expanded, contracted, and sheared easily
just by modifying deformation gradients, as seen in Fig. 2. This
treatment of deformation gradients gives us a convenient tool for
controlling plastic deformations (shape change) of MPM bodies.

4.2 Elastic model
We use the hyperelastic constitutive model of fixed-corotational
elasticity for our simulations for its simplicity [Stomakhin et al.
2012], [Jiang et al. 2016]. Note that hyperelastic materials do not
experience any plastic deformation normally. Deformation gradient
control is what introduces plastic deformation, which produces
shape and topology change.

4.3 Position loss function
To automatically control deformation gradients, we introduce a
particle position loss function in Equation 2.

E(C) =
N−1∑
p=0

1
2
∥xnp − xnpc ∥

2 (2)

WhereC is a spacetime control tensor of deformation gradients, and
subscript c denotes that the variable is user-defined. Using this loss
function, we are able to generate both deformation and movement
based results, shown in Fig. 3.

The limitations of this loss function are that the target shape must
be defined as a point cloud, where each point maps to a point in
the control point cloud. Complications arise when the target shape
can’t be represented by an affine transformation of the control
point cloud. Deciding how to map the control points can become
a complicated transportation problem, which we currently do not
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Fig. 3. Control examples using the position loss function (2). (Top) an mpm
circle expanding in a zero gravity environment. (Bottom) an mpm circle
jumping in a gravity environment. The red particles are the MPM points
we are controlling, while the green particles represent the target positions
of the points. The deformation gradients of the particles have also been
mapped to the circles to form ellipses.

address. Another limitation with defining target points is that the
control points have only one desired final destination. An animator
may be more interested in the collective MPM body deforming into
the target shape, disregarding where each individual control point
ends up.

4.4 Mass loss function
To alleviate the aforementioned problems of the position loss func-
tion, we define a mass loss function on the MPM grid nodes in
Equation 3.

E(C) =
M−1∑
i=0

1
2
∥mn

i −mn
ic ∥

2 (3)

This function allows us to easily define a target shape. We use
image files to create the target point cloud, which in turn is used to
create the target mass grid. The complicated transportation problem
from the position loss function is solved in the mass loss function
using the MPM grid. This allows us to create topology changing
examples, for example Fig. 1.

5 RESULTS
We demonstrate a variety of topology changing examples in Fig. 4.

5.1 MPM mass rendering
We use the same MPM grid node basis functions to sample each
pixel on the rendered screen using a fragment shader. These sampled
pixels represent MPM particles in the continuum that MPM attempts
to represent. We use the mass of the sampled MPM pixel to color
the pixels, where large masses are red, medium masses are green,
small masses are blue, and zero or nearly-zero masses as white.

Fig. 4. Control examples using the mass loss function (3). These have been
rendered using the mass rendering technique. (Top) genus 2 to genus 4,
(middle) genus 1 to genus 4, (bottom) genus 2 to genus 0.

5.2 Mass ejection
Note that in some cases, the optimization decides that ejecting mass
is the fastest way to move toward the target shape (decreasing the
loss function). This can produce interesting and visually pleasing
animations. A more drastic example of mass ejection can be seen in
Fig. 5.

5.3 Convergence
To speed up computation, the majority of optimizations produced
in this figure are not run to convergence. Running the optimization
to convergence in this case means having an infinite amount of
temporal iterations, only ending the optimization after it fails to
find a sufficient decrease within an entire temporal iteration. Con-
verged animations match the target shape more accurately than
non-converged animations, as seen in Fig. 5. This presents a trade-
off in computation speed versus target shape matching accuracy.
Luckily, some artists would prefer that the object doesn’t match
the target shape too accurately, which would let them take the
advantage of computation speed without losing much in return.

5.4 Extending Animations
It is difficult to determine how many time steps the simulation
should run for. If it is too short, the object may not have enough
time to morph into the target shape. If it is too long, the optimization
will take a long time. A simple trick is to just extend the animation.
The idea is to run an optimization to convergence, then take the final
point cloud from the optimization and use that as an initial point
cloud for another optimization using the same target shape. Not
only can this technique be used to give objects an extra arbitrary
amount of time to morph into a target shape, but it can also just
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Fig. 5. Initial and final states of a genus 4 object turning into a star. (Top)
Non-converged optimization. (Bottom) Converged optimization. Notice how
the converged optimization produces a sharper star, although it has more
mass ejected. However, the mass missing the target shape is mostly of low
density (blue) in the converged example, while the mass missing the target
shape is mostly high density (red) in the non-converged example.

extend an animation where an object needs to sustain a target shape.
An object would need some extra deformation gradient control to
sustain a target shape since the loss function we minimize does
not care about the final velocities or deformation gradients, which
means that if the simulation was continued, the object could follow
its velocity and deformation to morph into something that is not
the target shape. An example of extending animations can be seen
in Fig. 6.

5.5 Penalty Grids
If mass ejection is undesired, we can add an extra penalty to mass
on nodes outside of the target shape. However, sometimes mass
ejection is required for the object to match the target shape, even
when the optimization is run to convergence, as seen in Fig. 7.

6 LIMITATIONS AND FUTURE WORK
We created a control framework which automatically modifies the
deformation gradients of material points. This effectively creates
plastic deformation, which when combined with MPM’s implicit
topology handling, can produce a multitude of interest shape and
topology morphing examples. Using a physical simulation method
like MPM also constrains the morphing to be physically accurate.
This can produce the mass ejection effect, as seen in Fig. 1 and Fig. 4.

6.1 Improving the position loss function
The position loss function has difficulty in creating target shapes,
since there needs to be a one-to-one mapping between target points

Fig. 6. Initial and final states of a heart breaking apart in an extended
animation. Each row represents one optimization, and each new row uses
the final point cloud from the previous row as its initial point cloud. All rows
are optimizing toward to the same target shape. The first row shows that
the optimization wasn’t given enough time to break the heart apart. The
second row gave the object the time it needed to break apart. In the final
row, you can see that the optimization already got as close to the target
shape as it will get, so it is just controlling deformation gradients to sustain
the animation.

Fig. 7. A genus 4 object morphing into star. (Top) Converged optimization
without using a penalty grid. (Bottom) Converged optimization using a
penalty grid. Note that the object with the penalty grid wasn’t able to
create the star shape as accurately. This is unexpected result actually makes
sense, since taking away mass ejections can inhibit the objects ability to
morph.

and control points. One method we can try is giving users the option
to define their target points by manually deforming their control
points using a cage-based skinning technique. Another option is to
use more complicated techniques in optimal transport. Regardless of
how we do it, there will still be the limitation of control points only
having one target position, a restriction that the mass loss function
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does not have.

6.2 Improving the mass loss function
In the case of the mass loss function, the amount of detail the target
shapes can have depends on the grid resolution. Higher grid resolu-
tions lead to more computational time, which can slow down the
optimization considerably. One method we can try is to use a finer
target grid, but keep using a coarse simulation grid.

6.3 Penalizing velocity and deformation gradients
To make the morphing less volatile, we can decide to add penalties
on the final velocities and deformation gradients of the material
points. This can allow animators to use stiffer materials without
them causing a numerical explosion in the MPM simulation.

6.4 Material Parameter Control
Another step we could take is material parameter optimization. Dif-
ferent material parameters will produce different animations. These
can be controls the animator uses, or the animator can decide they
want the MPM blob to alter its own material parameters for the best
optimization.

6.5 Color in the Loss Function
To improve the artistic freedom given to animators, we can try to
add a color term to the loss function. With this we may be able
to generate interesting animations such as the paint in a painting
moving around to form another painting.

6.6 Mass control
Finally, we can also experiment with material mass optimization.
If the material could alter its own mass, it could create areas of
high mass to push on. There could also be many different ways for
the MPM blob to use mass optimization that we cannot think of.
However, we will need to be careful when using this with the mass
loss function. We may need to define a more general grid-based loss
function for this technique.
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7 APPENDIX: SOFTWARE
The animations and figures for this paper were produced using a
C++ program that uses OpenGL for rendering. GLM (OpenGL Math-
ematics Library) was used for implementing most linear algebra
structures and operations. ImGui (Immediate mode GUI library) was
used to create the graphical user interface. The main/novel feature
of the program is the MPM spacetime deformation gradient control,
but the program can also simulate and interact with MPM objects in
real time by making use of the GPU via OpenGL Compute Shaders.
The program can also save and load MPM point clouds, while also
synthesizing MPM point clouds from images. The code is located

Fig. 8. The GUI containing the optimization parameters users can choose
to play with.

at https://github.com/mshoe/MPM_Geometry (currently a private
repository).

7.1 General and Spacetime Data structures
The program has data structures for general MPM point clouds
and MPM background grids, but uses larger data structures for the
MPM point clouds and grids used in spacetime control (for storing
gradients). Due to this, users will need to create their point clouds
with the general MPM data structures, and then designate them to
be used in spacetime control.

7.2 Spacetime optimization parameters
After an initial point cloud and a target point cloud is set, the user
can play with a wealth of different parameters, as seen in Fig. 8.

7.3 Modifying rendering methods
After an optimization is complete, users can change the renderings
between points and the grid mass rendering, as seen in Fig. 9.

7.4 Real-time Physics Playground
The program also comes with a real-time interactive physics play-
ground. In this mode,MPM is parallelized on the GPU using compute
shaders. The user can interact with the objects by creating a gravita-
tional pull where there mouse is. The user can also play with many
different visualization features, one of which is shown in Fig. 10.

ACM Trans. Graph., Vol. 00, No. 0, Article 0. Publication date: 0000.



0:6 • Xu et al.

Fig. 9. (Top) (left) Initial MPM point cloud, (right) target point cloud vi-
sualized on top of initial point cloud. (Middle) The produced animation,
visualized via points. (Bottom) The produced animation, visualized via grid
density.

Fig. 10. A user playing a collection of shapes while visualizing their elastic
potential energies. The yellow glow represents where their mouse is creating
the gravitational pull.

Apart from elastic materials, the user can also play with snow, or
at least an approximation of snow in MPM as seen in Fig. 11. The
user can also modify the material parameters of the objects they are
playing with in real-time to make whatever kind of substance they
desire, as seen in Fig. 11.

Fig. 11. (Top) MPM snow. (Bottom) The same snow block, but after its shear
modulus was reduced, making it a more slimy substance.
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