
DEFORMATION GRADIENT CONTROL OF 
PHYSICALLY SIMULATED AMORPHOUS SOLIDS

Method:
Our method is based on the minimization of a loss function at the end of a simulation network 

produced by the forward pass of a differentiable MPM simulator. We model our material’s 

constitutive properties using fixed co-rotated elasticity [Jiang et al . 2016; Stomakhin et al. 2012]. A 

key property of elasticity is a material’s return to their rest shape after stresses are removed. Since 

we are controlling deformation gradients and hence changing rest shapes, our simulated objects are 

elastoplastic despite using an elastic material. The loss function we use is the squared distance 

between projected particle grid mass, and target grid mass.
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Problem:
The objective is to control a physically simulated amorphous solid to move in a lifelike manner. The solid 
should also be able to change its topology and shape morph. The ideal artist workflow with this tool is 
to input initial and target shapes, and then receive as output the physically based animation morphing 
between the two.
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Related Work:
Our method is most inspired by Deformable Objects Alive [Coros et al. 2012], which used 
rest-state adaptation to control mesh based elastic objects. We apply a similar approach to 
meshless objects in a differential material point method simulator based on ChainQueen
[Hu et al. 2018].
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Deformation Gradient Control:
Deformation gradients can be controlled by 
optimizing with respect to a position loss 
function. However, this type of loss 
function is difficult to use since it requires a 
point-to-point mapping between the target 
and input point cloud. To circumvent this, 
we use optimize with respect to a grid loss 
function, where particle masses are 
projected to a background grid like in 
MPM. The sequence to the right show the 
difference between using a position loss 
function (top) versus a grid loss function 
(bottom) for a circle jumping optimization.

Limitations and Future Work:
❖ Mass ejection. Optimizing the grid loss function often leads 

to mass ejection, where the object propels itself towards 
certain morphs by ejecting its own mass.

❖ Parallelization. The working implementation is CPU-based.
The computation can be sped up with a parallel CPU
implementation or GPU implementation.

❖ Learned Model. The particle-to-grid step of MPM is difficult 
to parallelize, and so a learned model of the particle-to-
grid step may enhance speed significantly. On the other 
hand, we could use a fully learned simulator.
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